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Abstract
The shear wave velocity is one of a few important parameters that characterize
the mechanical properties of bio-materials. In this paper, two noninvasive
methods are proposed to measure the shear velocity by inspecting the shear
wave interference patterns. In one method, two shear wave sources are placed
on the opposite two sides of a sample, driven by the identical sinusoidal signals.
The shear waves from the two sources interact to create interference patterns,
which are visualized by the vibration sonoelastography technique. The spacing
between the pattern bands equals half of the shear wavelength. The shear
velocity can be obtained by taking the product of the wavelength and the
frequency. An alternative method is to drive the two vibration sources at
slightly different frequencies. In this case, the interference patterns no longer
remain stationary. It is proved that the apparent velocity of the moving patterns
is proportional to the shear velocity in the medium. Since the apparent velocity
of the patterns can be measured by analysing the video sequence, the shear
velocity can be obtained thereafter. These approaches are validated by a
conventional shear wave time-of-flight approach, and they are accurate within
4% on various homogeneous tissue-mimicking phantoms.

1. Introduction

It is well known that many diseases are associated with some sort of change in the mechanical
properties of bio-tissues (Tumen and Cohn 1965, Fentiman 1997). Physicians have long
used manual palpation as a screening method in physical examinations (Carvalhal et al 1999,
Obek et al 1999). When doing so they are making a qualitative assessment of the shear
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stiffness (modulus) of the tissue. One way of quantifying the change is to measure the shear
velocity in the tissue (Vexler et al 1999). In a linear elastic medium the shear modulus is equal
to the square of the shear velocity times the density (Love 1944, Achenbach 1973a). When
the tissue is better characterized as a linear viscoelastic medium, the shear modulus will be
complex and the shear velocity may exhibit frequency dispersion (Achenbach 1973b).

Yamakoshi et al (1990) developed an approach to measure shear velocity. External low
frequency vibration was applied to the region of interest, then both amplitude and phase of
the vibration were mapped using a Doppler detection technique. The vibration phase image
was used to measure the wave propagation velocity. It was found that refraction and reflection
of the propagating vibration waves at internal tissue boundaries can create bias in the phase
map. Standing waves whose wavelength differs from that of the shear wave propagation can
occur.

Magnetic resonance imaging (MRI) has also been applied to this problem. Muthupillai
et al (1995) sensitized a gradient-echo imaging pulse to harmonic motion permitting them
to generate a MRI phase image which allowed measurement of wavelength among other
properties. Bishop et al (1998) applied this technique to the problem of visualizing shear
wave propagation in excised tissue samples. Later, Smith et al (1999) proposed a method to
filter out the other modes of motion such as reflections, vibrations and ambient background
motions that sometimes obscure the accurate measurement of the shear waves when using this
technique.

Catheline et al (1999) proposed an ultrasound technique, which they call transient
elastography, to deal with some of artefact issues caused by wave reflection and standing
waves. This method uses a low-frequency transient vibration to create displacements in tissue,
which are then detected using pulse echo ultrasound. Ultrasonic A-lines (oscilloscope traces
of the echo amplitude along the wave propagation of the ultrasound pulses) are collected at
the frame rate of 1300 Hz immediately before and during the application of a low frequency
(40–250 Hz) tone burst vibration to a 6% gel phantom. Cross correlation techniques are then
used between successive A-lines to estimate the particle displacement during the period the
shear waves are propagating but before any boundaries are reached. This avoids problems
with standing waves. The shear wavelength can be estimated from the visualized wave
progression. This technique is effective but requires frame rates exceeding those of available
ultrasound scanners. Dutt et al (2000) developed an ultrasonic method of visualizing shear
wave propagation and compared it to the MRI based technique. A-lines were collected at
5 to 10 kHz in synchronism with low frequency (200 to 500 Hz) 20–25 ms tone bursts from
a speaker coil. Using this technique they were able to both visualize shear wave propagation
and measure shear velocity.

Nightingale et al (2003) have developed an ultrasonic method of visualizing shear wave
propagation involving mechanical excitation of the tissue with acoustic radiation force. A
repeated interrogation approach was used to get around the necessity of using high frame rates
to adequately sample the region of interest. Shear waves were generated by the radiation force
and both high quality shear wave image sequences (movies) and the measurement of shear
velocity was achieved using a modified commercially available ultrasound scanner.

The potential clinical significance of measuring the shear wave velocity is illustrated in
a recent paper by Sanada et al (2000). Sanada and co-workers have applied an ultrasound
approach to the problem of measuring the mechanical properties of the liver which they call
sonoelasticity. A low frequency (40 Hz) vibration source was used to propagate shear waves
in human liver in vivo while an ultrasound Doppler signal detection technique was used to
estimate the wavelength of the propagating shear waves, the shear velocity being inferred
from the wavelength. This method was used to measure the shear velocity in the livers of
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45 normal volunteers, 153 patients with liver cirrhosis and 83 patients with chronic hepatitis.
In the mean, the measured velocity in patients with liver cirrhosis was twice that measured in
the healthy volunteers. This implies that shear velocity is a specific indicator of diffuse liver
disease such as cirrhosis.

In this paper, new techniques are introduced to measure the wavelength and velocity
of shear waves in bio-materials. In these techniques, two shear wave sources are placed
on either side of a region of interest. When the sources are vibrated in phase at the same
frequency the resulting interference pattern, when visualized by sonoelastography imaging,
shows stationary peaks and troughs which are located at intervals equal to half the shear
wavelength. Furthermore, when the sources are vibrated at slightly different frequencies the
interference pattern moves from the higher frequency source to the lower frequency source.
This apparent motion, which might be termed a ‘crawling wave’ (i.e. falling between travelling
and standing waves), is shown to have a velocity which depends directly on the shear velocity
but is scaled by a certain ratio of the frequency difference to twice of the frequency of the
lower source. This can effectively slow down the shear waves by one or two orders of
magnitude, allowing commercially available ultrasound systems to be used for imaging. We
experimentally validate these methods by comparing our results to conventional time-of-flight
experiments which are described in the literature (McAleavey et al 1999, Vexler et al 1999).
The results are shown to be accurate within 4% on various homogeneous tissue-mimicking
phantoms.

2. Theory

2.1. Basic theory

It is well accepted that the speed of the shear wave propagation in a linear elastic medium is
directly related to the mass density ρ and the shear modulus G of the medium.

vshear =
√

G

ρ
. (1)

Therefore, the shear modulus G can be determined by measuring the speed of the shear waves
and the density, provided that the medium is homogeneous and isotropic. By noting the
identity that vshear = f ∗ λ, the shear modulus can be calculated once the shear wavelength is
measured and all the other parameters are known: G = ρ · (f · λ)2.

2.2. Sonoelastography

The methods we propose are based on an ultrasonic imaging modality called sonoelastography
(Lerner et al 1988). Sonoelastography measures and images the peak displacement of the
audio frequency local particle motion by analysing the Doppler variance of the ultrasound
echoes (Huang et al 1990, Taylor et al 2000). From the signal processing perspective,
sonoelastography visualizes the envelope signal of the particle motion. Vibration fields
are mapped to a commercial ultrasound scanner’s screen in real time. Regions where the
vibration amplitude is low are shown as dark green, while regions with high vibration are
shown as bright green. Since the phase data are lost while displaying the vibration amplitude,
sonoelastography does not display the shear wavelength, unless additional phase estimators
are employed (Huang et al 1992). Sonoelastography has been applied to visualize the shear
wave transducers’ beam patterns or interference patterns (Wu et al 2002).
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Figure 1. Schematic drawing of the experiment set-up. Two bimorphs (a) are in close contact with
the phantom (b). The arrows indicate the motion vectors of the tips of the bimorphs. The sector
shape depicts the imaging plane of the ultrasound probe (c).

Figure 2. Coordinate system for equations (2) and (3). The right travelling and the left travelling
shear waves from two sources are depicted. Two sources locate at 0 and D, respectively. In the static
pattern case, k1 = k2 = k and ω1 = ω2 = ω. In the moving pattern case, k2 = k1 + �k = k + �k

and ω2 = ω1 + �ω = ω + �ω.

2.3. Static interference pattern estimates

In order to measure the wavelength of the propagating shear waves, we propose to apply two
vibration sources of identical frequencies and amplitudes. The two sources are placed on
opposite sides of the testing sample. The tip of each source oscillates along a vector parallel
to the surface of the sample. The imaging plane is defined by the two vibration sources
and the ultrasonic probe. Since sonoelastography only images the particle motion along the
ultrasound beam, which is roughly in y direction, only the y component of the wave motion
will be discussed in this paper. Please see figure 1 for illustration. The waves from one of the
sources interact with the waves from the other source to create an interference pattern. The
pattern is mainly determined by the wavelength and the signal frequency. In the homogeneous
medium, if the two vibration sources are relatively far away from the region of interest (ROI),
each train of waves can be considered as plane waves, and the interference patterns appear as
parallel stripes. The stripes are perpendicular to a line connecting the two vibration sources.
Under the plane wave assumption, it is proved as follows that the spacing between the parallel
stripes is half of the shear wave wavelength. As illustrated in figure 2, considering two plane
wave sources with separation D. The right travelling shear waves can be expressed as

exp(ikx − iωt).

The left travelling shear waves can be expressed as

exp(ik(D − x) − iωt).
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The interference patterns are the superposition of the two waves

exp(ikx − iωt) + exp(ik(D − x) − iωt)

where k is the shear wave number k = ω
vshear

and ω is the angular frequency ω = 2πf .
Take only the real part of the terms

u(x, t) = cos(kx − ωt) + cos(kD − kx − ωt)

= 2 cos

(
kx − kD

2

)
∗ cos

(
ωt − kD

2

)
(2)

where u is the vibration amplitude.
The second term is spatially invariant and it is not imaged by sonoelastography. The first

term, however, is time invariant and has a spatial distribution. Recall that sonoelastography
images the peak value of the vibration field, thus the image actually becomes

∣∣2 cos
(
kx− kD

2

)∣∣.
The spatial period of this expression is λ

2 , where λ is the wavelength of the shear wave. Thus,
the shear wave wavelength can be calculated as twice the spacing between the interference
patterns. The shear wave speed can be obtained thereafter, since the signal frequency is known.

This approach is referred to as the static interference pattern approach.

2.4. Moving pattern estimates

As an alternative approach, if one of the two driving signals is tuned to be slightly different
from the other signal, for example, signal A is a sinusoidal function at frequency ω and signal
B is at frequency ω + �ω, the interference patterns are no longer static. The patterns will
then move towards the source with the lower frequency. This phenomena may be termed as
‘crawling waves’. Under plane wave assumption, the relation between the apparent speed of
the crawling waves and the true shear wave speed can be deduced as follows.

The right travelling waves can be expressed as

exp(ikx − iωt).

The left travelling waves can be expressed as

exp[i(k + �k)(D − x) − i(ω + �ω)t]

where

�k = �ω

vshear
.

The interference patterns are the superposition of the two waves

exp(ikx − iωt) + exp[i(k + �k)(D − x) − i(ω + �ω)t].

Take only the real part of the terms

u(x, t) = cos(kx − ωt) + cos((k + �k)(D − x) − (ω + �ω)t)

= 2 cos

[(
k +

�k

2

)
x +

�ω

2
t

]
∗ cos

[
�k

2
x +

(
ω +

�ω

2

)
t

]
. (3)

Note that D merely introduces a constant phase and is thus omitted for simplicity.
Equation (3) factorizes the two waves into rapidly varying carrier signals (the second

factor) and slowly varying envelope signals (the first factor). Since sonoelastography only
images the envelope, it is the absolute value of the first factor that is displayed. Also note
that there are both time variables and spatial variables in this factor. It appears to be a
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travelling wave. The apparent speed of these ‘crawling waves’ can be derived by using:
v2

pattern = ∂2u

∂t2

/
∂2u

∂x2 , thus

vpattern = �ω

2
(
k + �k

2

) . (4)

It is interesting to analyse two mathematical extremes of equation (4). Firstly, if we keep one
of the sources vibrating and completely mute the other source, that is let k be 0 and �k be
large, vpattern = �ω

�k
= vshear. Even though sonoelastography is not able to image the shear

wave propagation in this extreme scenario, the result shows that equation (4) is mathematically
justified. The other extreme is that if the frequency difference �ω is small compared to ω, then
�k is small comparing to k. Therefore, vpattern ≈ �ω/2k. This is the typical configuration we
use for our experiments. Noting that the speed of the shear wave is vshear = ω/k, the relation
between the speed of the crawling waves and the true shear waves is

vpattern ≈ �ω

2ω
vshear (5)

given

�ω � ω.

According to equation (5), the shear waves can be ‘slowed down’ one or two orders of
magnitude by choosing �ω much smaller than ω, so that a conventional ultrasonic scanner
modified for sonoelastography can visualize and track the wave propagation. In practice, �ω

is normally chosen between ω/200 and ω/100 for the convenience concerning the ultrasonic
scanner’s frame rate. Once the apparent speed of the ‘crawling waves’ is measured by analysing
the video sequences, the true shear wave speed can then be obtained from the above equation.

This method is referred to as the moving pattern approach.

3. Method and materials

In the static or moving interference pattern experiment, two bending piezo elements known
as bimorphs (Piezo systems, Cambridge, MA, USA) are applied as the vibration sources. A
signal generator (Tektronix FG5010) produces monochrome low frequency signals. In the
moving pattern experiment, another signal generator produces the second signal. The signals
pass through a two channel amplifier before fed into the bimorphs. A GE Logiq 700 which
has been specially modified to realize the sonoelastography functions is applied to visualize
the ‘crawling wave’ propagation.

In the conventional shear wave time-of-flight measurement, one bimorph is used as
the transmitter and the other as the receiver. When manually triggered, a single cycle
sinusoidal signal (tone burst signals where the number of burst equals one) is generated
from the Textronix signal generator, feeding into an oscilloscope as channel one and into an
amplifier simultaneously. When amplified, the signals drive the transmitting bimorph to send
a shear wave pulse into the testing sample. The receiving bimorph picks up the signal when
the shear wave pulse travels to the receiving end and feeds the signal into the oscilloscope as
channel two. The receiving bimorph is held by a 3D positioner (Velmex, Bloomfield, NY)
so the distance between the transmitter and the receiver is precisely controlled and measured.
The time lag between pulses displayed on channel one and channel two is the time that the
shear waves spend to travel from the tip of the transmitter to the tip of the receiver. Figure 3
is a schematic of the set-up of the shear wave time-of-flight experiments.
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Figure 3. Schematic drawing of the transient shear wave speed measurement. The time lag
between the two signals indicates the shear wave time-of-flight.

Figure 4. Sonoelastography image of shear wave interference pattern on GE Logiq 700. The
medium is 5% gelatin phantom. Both sources vibrate at 200 Hz. The peak vibration amplitude in
the direction of the ultrasound wave is mapped to a grey scale.

Two gelatin phantoms, both 8 × 9 × 12 cm3 in size and rectangular solids in shape
approximately, are constructed for the experimental verification of the theory. The phantoms
are made from 800 ml degassed, deionized water, 5% and 10% (by weight) food gelatin
(Knoxx), respectively, and 10% formaldehyde (v/v), 10% glycerol (v/v) and 0.5% graphite
powder as scatterers. The manufacturing procedure is described as follows. The water is first
heated to boiling and then placed on the stirring plate, with a magnetic rod stirring the water.
Gelatin is slowly added to the water. After all gelatin has been added, the solution is reheated
to boiling in a microwave oven for 2 min with plastic wrap covering the container. Then
the graphite power is mixed into the solution. The mixture is cooled for about 50 min while
stirring. Finally the formaldehyde and the glycerol are mixed into the solution. A bowl-shaped
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Figure 5. Example of shear wave time of flight experiment wave forms. The top wave form is the
transmitted signal. The bottom waveform is the 300 times amplified received signal. The arrows
indicate the transmitting time and the receiving time of the start of the pulse disturbance. The time
difference between the two arrows is 14.74 ms.

Zerdine tissue phantom with stiff inclusions (CIRS Norfolk, VA) is also employed to verify
that the proposed methods work on various materials and shapes.

4. Results

4.1. Pattern results

On the 5% gelatin phantom, two ‘static pattern’ experiments were conducted at 180 Hz and
200 Hz (figure 4). We make multiple measurements of the spacing between the pattern stripes.
The shear wave wavelength is then twice of the arithmetic average of the measurements. The
product of the wavelength and the signal frequency yields the shear wave speeds. The speed
results of the two trials are 1.39 m s−1 and 1.40 m s−1 respectively. To perform the ‘moving
pattern’ measurement, one of the two sources is driven by 200 Hz sinusoidal signals, the other
by 200.1 Hz. An external device (VXM controller, Velmex) is programmed to trigger the
ultrasound scanner at precisely 0.5 s intervals, for a total of 60 frames. The ‘moving pattern’
is then tracked manually. The speed of shear wave is obtained to be 1.44 m s−1 by applying
equation (5).

On the 10% gelatin phantom, two ‘static pattern’ experiments were conducted at 450 Hz
and 500 Hz. Because the shear wavelengths in 10% gelatin phantom are much longer than
those in 5% phantoms, relatively high frequencies are chosen to have reasonable number
of interference patterns in the ROI. The speed results of the two trials are 5.50 s−1 and
5.46 m s−1, respectively. In the ‘moving pattern’ measurement, the two sources vibrate at
400 Hz and 400.4 Hz, respectively. The measured result is 5.43 m s−1.

4.2. Shear wave time of flight results

In the shear wave time of flight experiment, the bimorphs are held tight against the surface of
the gelatin phantoms. The distance between the tips of the bimorphs is measured as 81.1 mm
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Table 1. Summary of shear wave speed measurements of 5% gelatin phantom with different
experiment approaches.

Test type Frequency (Hz) Speed of shear wave (m s−1)

Static pattern approach 180 1.39
Static pattern approach 200 1.40
Moving pattern approach 200–200.1 1.44
Time of flight 200 1.40
Time of flight 300 1.39

Table 2. Summary of shear wave speed measurements of 10% gelatin phantom with different
experiment approaches.

Test type Frequency (Hz) Speed of shear wave (m s−1)

Static pattern approach 450 5.50
Static pattern approach 500 5.46
Moving pattern approach 400–400.4 5.43
Time of flight 500 5.43

on the 5% phantom and 80.0 mm on the 10% phantom. When manually triggered, one cycle
of 200 Hz pulse is transmitted into the 5% phantom through the transmitting bimorph. The
time lag between the received signal and the transmitted signal is measured as 57.7 ms. One
cycle of 500 Hz signal is transmitted into the 10% phantom and the time lag, as demonstrated
in figure 5, is measured as 14.74 ms. The speed of shear wave is then calculated as 1.40 m s−1

in the 5% phantom and 5.43 m s−1 in the 10% phantom, respectively.
The results are summarized in tables 1 and 2. Taking the shear wave time-of-flight results

as the gold standard, the error in the shear wave velocity measurement on the 5% gelatin
phantom is less than 4% and the error on the 10% gelatin phantom is less than 2%.

4.3. Shear modulus

In order to estimate the shear modulus of the gelatin phantoms, we assume it can be
approximated as a linear elastic material. Thus, the shear modulus G = ρ ∗ v2, where ρ

is the density of the material. Taking 1.05 g cm−3 as the density of both phantoms, the 5%
and the 10% gelatin phantoms’ shear moduli are 2.07 kPa and 30.9 kPa, respectively.

5. Discussion

As shown by the experiments, when both of the bimorphs are driven by the external source,
the interference between the two sources is the predominant cause of patterns. The modal
patterns, which are the interference between the travelling waves and the reflected waves, are
overshadowed, because the reflected waves tend to be weaker than the incident waves from the
other source due to the attenuation, even though they are present. Therefore, the interference
patterns, unlike the modal patterns, depend little on the shape of the phantom and the boundary
conditions. Changing the phantom shape does not affect the accuracy of the measurement.
An experiment on a bowl-shaped Zerdine phantom yields very similar interference patterns as
observed in rectangular gelatin phantoms.

In the experiments, we observe that since a few pattern stripes are required to conduct
the wavelength measurement, generally there exists in practice a frequency lower limit, which
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Figure 6. Sonoelastography image of shear wave interference pattern on a Zerdine phantom with
a lesion in it. Both sources vibrate at 250 Hz. The image is ‘histogram equalized’ to enhance the
visibility of details.

depends on the material property and the imaging field area. Below this frequency limit, the
shear wavelength may be so long that only one or less wavelength appears in the imaging field.
The measuring result in this case is ambiguous. Since the materials’ shear wave attenuation
usually increases while the frequency increases, there exists a frequency upper limit for the
proposed techniques to be practical. Above this frequency limit, the shear wave attenuation
may be so high that the two trains of waves do not meet before their energy dies out. For
example, on the 5% gelatin phantom, the empirical frequency window extends from 80 Hz
to 800 Hz, approximately. Within this frequency window, the precision of the technique is
limited predominately by the imaging noise and resolution, as these limit the precision of
estimation of the spacing between interference patterns.

Even though we focus on the measurement of shear wave velocity in homogeneous media
in this paper, the techniques we propose may have foreseeable potentials to be extended into
inhomogeneous cases. Some preliminary experiments have been performed on a Zerdine
phantom with a stiff inclusion in it. Figure 6 shows the interference pattern image over the
lesion. The pattern spacing inside the lesion appears larger than the pattern spacing outside of
the lesion, indicating that the shear wave velocity is higher inside the lesion. Please note that
since the interference pattern appears darker in the stiff lesion due to sonoelastography effect
(Lerner et al 1988), figure 6 is ‘histogram equalized’ to enhance the visibility of the details
with in the lesion. Precise shear wave velocity inversion based on the static pattern images
and the moving pattern videos will be investigated in the future.

In sonoelastography, the vibration amplitude is quantized into 16 levels due to the current
hardware implementation. In typical experiment procedures, the peak vibration in the FOI is
adjusted to the high end of the 16 levels (just before sampling aliasing occurs), while the noise
strength is usually around 1. Therefore, the signal to noise ratio (SNR) of sonoelastography is
usually around 16:1. However, the SNR may be reduced in the stiff inclusions because of the
decrease of the vibration amplitudes. Empirically, in the static pattern experiments, the stiff
inclusions have to be larger than half of the shear wavelength which is the spacing between
patterns, to be revealed. In the crawling wave experiments, the image resolution depends on
the ability to track the crawling wave in the presence of noise. This problem resembles the
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problem of estimating the displacement of an envelope signal, which is bounded by noise and
bandwidth or time width considerations. The overall image contrast and resolution may be a
combination of all the stated concerns, and the detailed analysis is beyond the scope of this
paper.

6. Conclusion

Two novel approaches are proposed and evaluated for the measurement of shear wave speed
in homogeneous bio-materials. Two vibration sources instead of one are utilized in these
two approaches. Under sonoelastography, the interference patterns between the two wave
sources reveal the phase data of shear wave propagations and thus the shear properties of the
materials. In these two methods, shear wave velocity can be measured with appropriately
modified commercial ultrasound scanners in real time. Both methods are validated against the
previously reported shear wave time-of-flight method on various bio-materials. The maximum
error on various phantoms is less than 4%.
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